xx

Thursday, June 19, 2008

Optimizing Economic Order Quantity (EOQ)

Optimizing Economic Order Quantity (EOQ)
Inventory models for calculating optimal order quantities and reorder points have been in existence long before the arrival of the computer. When the first Model T Fords were rolling off the assembly line, manufacturers were already reaping the financial benefits of inventory management by determining the most cost effective answers to the questions of When? and How much?. Yes long before JIT, TQM, TOC, and MRP, companies were using these same (then unnamed) concepts in managing their production and inventory. I recently read Purchasing and Storing, a textbook that was part of a “Modern Business Course” at the Alexander Hamilton Institute in New York. The textbook published in 1931 (that’s right 1931) was essentially a how to book on inventory management in a manufacturing environment. If you’re wondering why I would want to read a 70-year-old business text, my answer would be that the fundamental concepts of managing a business change very little with time, and reading about these concepts in a vintage text is a great way to reinforce the value of the fundamentals. The occasional reference to “The War” (referring to WWI) also keeps it interesting and the complete absence of acronyms is refreshing. As you may have guessed, this 70-year-old book contained a section on Minimum Cost Quantity, which is what we now refer to as Economic Order Quantity (EOQ). I can imagine that in the 1930’s an accountant (or more likely a room full of accountants) would have calculated EOQ or other inventory related formulas one item at a time in a dimly lit office using the inventory books, a mechanical adding machine and a slide rule. Time consuming as this was, some manufacturers of the time recognized the financial benefits of taking a scientific approach to making these inventory decisions. So why is it that, in these days of advanced information technology, many companies are still not taking advantage of these fundamental inventory models? Part of the answer lies in poor results received due to inaccurate data inputs. Accurate product costs, activity costs, forecasts, history, and lead times are crucial in making inventory models work. Ironically, software advancements may also in part to blame. Many ERP packages come with built in calculations for EOQ which calculate automatically. Often the users do not understand how it is calculated and therefore do not understand the data inputs and system setup which controls the output. When the output appears to be "out of whack" it is simply ignored. This sometimes creates a situation in which the executives who had purchased the software incorrectly assume the material planners and purchasing clerks are ordering based upon the systems recommendations. I should also note that many operations will find these built-in EOQ calculations inadequate and in need of modifications to deal with the diversity of their product groups and processes. Corporate goals and strategies may sometimes conflict with EOQ. Measuring performance solely by inventory turns is one of the most prolific mistakes made in the name of inventory management. Many companies have achieved aggressive goals in increasing inventory turns only to find their bottom line has shrunk due to increased operational costs. EOQ is essentially an accounting formula that determines the point at which the combination of order costs and inventory carrying costs are the least. The result is the most cost effective quantity to order. In purchasing this is known as the order quantity, in manufacturing it is known as the production lot size. While EOQ may not apply to every inventory situation, most organizations will find it beneficial in at least some aspect of their operation. Anytime you have repetitive purchasing or planning of an item, EOQ should be considered. Obvious applications for EOQ are purchase-to-stock distributors and make-to-stock manufacturers, however, make-to-order manufacturers should also consider EOQ when they have multiple orders or release dates for the same items and when planning components and sub-assemblies. Repetitive buy maintenance, repair, and operating (MRO) inventory is also a good application for EOQ. Though EOQ is generally recommended in operations where demand is relatively steady, items with demand variability such as seasonality can still use the model by going to shorter time periods for the EOQ calculation. Just make sure your usage and carrying costs are based on the same time period. Doesn’t EOQ conflict with Just-In-Time? While I don’t want to get into a long discussion on the misconceptions of what Just-In-Time (JIT) is, I will address the most common misunderstanding in which JIT is assumed to mean all components should arrive in the exact run quantities “just in time” for the production run. JIT is actually a quality initiative with the goal of eliminating wasted steps, wasted labor, and wasted cost. EOQ should be one of the tools used to achieve this. EOQ is used to determine which components fit into this JIT model and what level of JIT is economically advantageous for your operation. As an example, let us assume you are a lawn equipment manufacturer and you produce 100 units per day of a specific model of lawn mower. While it may be cost effective to have 100 engines arrive on your dock each day, it would certainly not be cost effective to have 500 screws (1 days supply) used to mount a plastic housing on the lawn mower shipped to you daily. To determine the most cost effective quantities of screws or other components you will need to use the EOQ formula. The basic Economic Order Quantity (EOQ) formula is as follows:

By Dave Piasecki